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Abstract

The phosphatidylinositol 3‐kinases (PI3K)/Akt signaling pathway is one of the

well‐characterized and most important signaling pathways activated in

response to DNA damage. This review discusses the most recent discoveries

on the involvement of PI3K/Akt signaling pathway in cancer development, as

well as stimulation of some important signaling networks involved in the

maintenance of cellular homeostasis upon DNA damage, with an exploration of

how PI3K/Akt signaling pathway contributes to the regulation of modulators

and effectors underlying DNA damage response, the intricate, protein‐based
signal transduction network, which decides between cell cycle arrest, DNA

repair, and apoptosis, the elimination of irreparably damaged cells to maintain

homeostasis. The review continues by looking at the interplay between cell

cycle checkpoints, checking the repair of damage inflicted to the DNA before

entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling

pathway. We then investigate the challenges the cells overcome to ameliorate

damages induced by oxidative activities, for example, the recruitment of many

pathways and factors to maintain integrity and hemostasis. Finally, the review

provides a discussion of how cells use the PI3K/Akt signaling pathway to

regulate the balance between these networks.

KEYWORD S

apoptosis, cell cycle, DNA damage and repair, oxidative stress, phosphatidylinositol 3‐kinases
(PI3K)/Akt signaling

J Cell Biochem. 2018;1-25. wileyonlinelibrary.com/journal/jcb © 2018 Wiley Periodicals, Inc. | 1

Bahman Yousefi and Maryam Majidinia contributed equally to
this work.

http://orcid.org/0000-0001-9776-5816
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcb.28309&domain=pdf&date_stamp=2018-12-28


1 | INTRODUCTION

The serine/threonine kinase Akt/protein kinase B (PKB),
plays an important role in a signaling pathway that
controls multiple cellular processes such as proliferation,
translation, cell growth, cell size, cell death as well as
invasion, and angiogenesis via the process of phosphor-
ylation.1,2 A member of the ACG kinase family, this
molecule has three conserved domains consisting of the
N‐terminal pleckstrin homology (PH) domain, a central
kinase catalytic domain, and a regulatory hydrophobic
motif domain. Akt has multiple isoforms with distinct
functions in various signaling pathways, with Akt one
being the most important and having functions in cell
survival. Akt exists in the cytoplasm in an inactive state,
and during activation, is relocated to the cell membrane.1

The binding of many factors, such as cytokines, growth
factors, and hormones to their receptors leads to
phosphorylation of Akt at two regulatory residues,
namely T308 and S473, mediated by phosphatidylinositol
3‐kinases (PI3K) activation.3 But further, it has been
shown that Akt can be activated in a PI3K‐independent
manner, by a Ca2+/Calmodulin‐dependent protein ki-
nase, severe heat, increased concentration of Ca2+, and
other signaling pathways.

PI3K located upstream Akt establishes PI3K/Akt
signaling pathway, which phosphorylates inositol ring
group in inositol phospholipid. Class 1A PI3Ks have a
heterodimers structure consisted of a catalytic (p110α,
p110β, and p110δ) and a regulatory subunit (p85α, p55α,
p50α, p85β, and p55γ), the substrate for this class, as well
as phosphatidylinositol‐4,5‐bisphosphate (PIP2) to gen-
erate the second messenger phosphatidylinositol‐3,4,
5‐trisphosphate (PIP3) that promotes the activation of
Akt for activation of downstream factors.4,5 The messages
received from activated tyrosine kinase receptors,
G‐protein coupled receptors, cytokine receptors, and
activated rat sarcoma (RAS) lead to activation of PI3K
and formation of PIP3.

This factor has two docking sites for proteins contain-
ing FYVE (Fab 1 [yeast orthologue of PIKfyve], YOTB,
Vac 1 [vesicle transport protein], and EEA1) and PH
domain. PH domains have been found in many proteins
such as phosphoinositide‐dependent kinase‐1 (PDK1)
and Akt/PKB.6 Following PI3K activation, AKT is
localized to the inner membrane via its PH domain.
Phosphorylation of AKT in the activation loop (T308) by
3‐phosphoinositide‐dependent protein kinase‐1 (PDK1)
or in serine 473 by the mammalian target of rapamycin
complex 2 (mTORC2) is essential for this translocation.7

Phosphatase and tensin homolog (PTEN) is a tumor
suppressor gene that works as lipid phosphatase whose
activity removes phosphate group from phosphoinositide

signaling molecules like PIP3.8-10 Dephosphorylation of
PIP3 occurs at position 3 on the inositol ring, which
serves to inhibit signaling transduction by PI3K/Akt
signaling pathway.11

mTOR is a prominent effector downstream of Akt that
has an important function in this pathway, for activation
of mTOR (mTORC1) by Akt, direct phosphorylation of
tuberous sclerosis complex 2 (TSC2) needs to happen or
else mTOR activity is inhibited. Tuberous sclerosis
complex 1 (TSC1) together with TSC2 form a hetero-
dimer complex and inhibit activation of Rheb, also
known as Ras homolog enriched in brain, which is a
small GTPase protein required for mTOR activation.12

Upon activation of mTOR, protein synthesis, cell
survival, cell growth, and proliferation are induced by
phosphorylation of its effectors molecules such as elF4E‐
binding proteins and ribosomal S6 kinase (S6K1 and
S6K2), which eventually lead to messenger RNA transla-
tion and accelerate tumorigenesis.13 A preponderance of
evidence has implicated hyperactivation of PI3K/Akt in
various types of human cancer as it leads to phosphor-
ylation or inactivation of proapoptotic agents such as Bcl‐
2‐associated death promoter (BAD) and procaspase‐9,
inhibition of the cytochrome C releasing from mitochon-
dria, and phosphorylation or inactivation of forkhead box
O (FoxO)‐3 which upregulates the expression of proa-
poptotic proteins such as Bim, FasL, and PUMA, as well
as phosphorylation and localization of mouse double
minute 2 homolog (MDM2), which results in the
degradation of p53 and, thereby, the suppression of the
inhibitory effects of p53 on cell cycle.14 More importantly,
it is said that the PI3K/Akt signaling pathway is also
activated in cells upon DNA damage, which in turn
stimulates some important signaling networks involved
in the maintenance, as well as restoration of cellular
homeostasis. Therefore, understanding the mechanisms
by which PI3K/Akt signaling regulates DNA damage
response (DDR) is essential to ascertain their function in
initiation, progression, metastasis, and therapy of various
types of cancers.15 In this review, we will discuss the
involvement of the PI3K/Akt signaling pathway in the
regulation of DDR and discussing its interaction and
crosstalk with three important parts of DDR including
sensors, transducers, and effectors.

2 | DDR: AN INTRICATE
NETWORK FOR SIMPLE PURPOSE

Subjection of DNA to tens of thousands of damages per day
for each of ~1013 cells within the body is a hazardous threat
to the integrity and stability of the genome, and the
organism's viability, as well as being the hallmark of various
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cancers.16 Some of the most important DNA lesions with
deleterious effects include single‐strand breaks and double‐
strand breaks (DSBs) which are commonly induced by
environmental hazards, such as ionizing radiation (IR), or
camptothecin and etoposide, pyrimidine dimers and 6‐4
photoproducts caused by IR and ultraviolet light, just to
name a few.17 To withstand all these threats to the DNA, a
powerful system is very vital for all organisms a system
which senses and detects any potential damages to DNA,
transduces the damage signals to the downstream network,
as well as processing the signal, and eliciting an appropriate
proper response to the benefits of the cells.18 That is, the
system has to provide a condition for the cells so that they
are capable of deciding their fate, by repairing the lesions
and continuing life or entering the apoptotic phase and
death.19 The intricate network with this important respon-
sibility in cells is called DDR. It is a protein based‐signal
transduction cascade operated by three key players, namely,
sensors, transducers, and effectors, to decide between repair
of DNA lesions, alterations in the cell cycle and apoptosis.20

To maintain the genome health, DDR machinery does not
function alone, but rather coordinates with other various
complementary machines such as chromatin‐remodeling
mechanism, to provide the accessibility of the DNA repair
components to the site of DNA damage within chromo-
somes, homologous recombination (HR), chromosome
cohesion machinery, cell‐cycle‐checkpoint, and chromo-

some‐segregation machinery.21,22 The whole process of the
DDR pathway takes place before the cell enters mitotic
phase to ensure the passing of the intact complement of
genetic material to daughter cells (Figure 1).22

3 | PI3K/Akt SIGNALING
PATHWAY IN DDR

3.1 | Crosstalk between PI3K/Akt
signaling and DDR sensors/transducers

To maintain the integrity of the DNA content of cells, any
damage to DNA structure and composition must be
recognized and signaled to downstream molecules for an
appropriate response (Figure 2). There are two major sensor
complexes; Mre11‐Rad50‐Nbs1 (MRN) mediator complex
and proliferating cell nuclear antigen (PCNA)‐related Rad9‐
Rad1‐Hus1 complex, also known as the 9‐1‐1 complex. The
MRN complex is involved in the recognition of DSBs, the
most common and dangerous DNA damage. Previous
studies have noted the overexpression of Nbs1, part of the
MRN complex, results in the process of cancer progression
and distant metastasis, which is mediated by the activation
of PI3K/Akt.23 Nbs1 interacts, through its conserved C‐
terminal motif, with the p110α catalytic subunit of PI3K
(with its N‐terminal domain), hence stimulating PI3K
activity.23 It is suggested that overexpression of Nbs1 may

FIGURE 1 The general overview of PI3K/Akt signaling pathway. PI3K consists of the catalytic subunit, p110, and the regulatory
subunit, p85. PI3K phosphorylates PIP2 and produces PIP3. PIP3 then activates PDK1 and its major downstream effector, Akt.
Phosphorylation of Akt promotes cell proliferation, survival, migration, and differentiation through targeting various genes. PTEN
dephosphorylates PIP3 and inhibits activation of Akt by PIP3. Phosphorylation of Akt induces the activation of one of the major downstream
effectors, mTOR. mTOR, mammalian target of rapamycin; PDK1, 3‐phosphoinositide‐dependent kinase 1; PIP2, phosphatidylinositol 3,
4‐bisphosphate; PIP3, phosphatidylinositol 3,4,5‐trisphosphate; PI3K, phosphatidylinositol 3‐kinases; PTEN, phosphatase and tensin
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mediate its role in the cell, namely the cytoplasm by
interacting with p110α to activate PI3K, which is an
oncogenic signaling pathway with aberrant expression in
various cancers. In addition, it was shown that increased
Nbs1 expression is a surrogate marker of aggressive
squamous cell carcinoma in the head and neck, and is also
correlated with the function of the PI3K/Akt pathway in
cancer cell lines. In fact, the oncogenic characteristic of
Nbs1 overexpression and its role in the cancer is exerted
indirectly by PI3K/Akt pathway.24 Sagan et al noted an
increased radiosensitivity in Nbs1−/− cells accompanied by
enhanced γ‐radiation‐induced apoptosis in a p53 indepen-
dent manner but required caspase‐8 activity, in addition to
the observation that γ‐radiation‐induced CD95 clustering in
γ‐irradiated Nbs1−/− cells was caused by a disturbance of
the PI3K/Akt pathway. The authors concluded that Nbs1
suppressed the CD95 death receptor‐dependent apoptotic
pathway following γ‐irradiation by effecting the PI3K/Akt
survival pathway.25

Upon detection of DNA damage, MRN complex
recruits Ataxia‐telangiectasia mutated (ATM) to break
DNA molecules.26 A study by Lee et al found that the
coexistence of the MRN complex and DNA molecules led
to the activation of the previously inactive ATM dimers,
which itself led to further activation and recruitment of
downstream molecules such as checkpoint kinase 2
(Chk2), p53, and breast cancer susceptibility gene 1
(BRCA1), which have important roles in translating ATM
signaling into tangible effects. It was suggested in this
study that the MRN complex was necessary for ATM
activation and function, as it also took part in unwinding
DNA ends.27 The MRN complex might also recruit
substrates to ATM.27 ATM along with ATR (ATM‐ and
Rad3‐related) and DNA‐PKcs comprise three important
members of phosphoinositide‐3‐kinase‐related kinases,

the most meticulously studied transducers of DDR. There
are a variety of other proteins involved in ATM
activation,28 such as PP5 phosphatase and the histone
acetyltransferase, Tip60.

Single strand DNAs (SSDs) emergence is commonly
detected by the replication protein A29 protein complex,
with two substantial functions in DDR: first, like sensors
in the DSB pathway, is the recruitment of a transducer,
ATR by effecting a subunit of this molecule known as
ATR interacting protein (ATRIP), and second, the
recruitment and subsequent activation of Rad17 which
then attaches to the PCNA‐related 911 (Rad9‐Rad1‐Hus1)
complex and facilitates interaction with the damaged
DNA molecule. It is noteworthy to mention that Rad17 is
shown to act as a clamp loader in DDR.30 Thereafter,
ATR phosphorylates and interacts with upstream DNA
damage sensors, which is necessary for optimal ATR
signaling. Downstream of the cascade, ATR phosphor-
ylates Chk1 kinases, and TopBP1, which again transit the
signal generated by the sensors to DDR effectors.

TopBP1 is a key molecule regarding the function of
ATR.31 TopBP1 is a substrate for both ATR and ATM,
and its phosphorylation initiates its function in check-
point signaling.32 It has a unique ability of binding to the
911 complex and the ATRIP subunit of ATR. This gives
TopBP1 the ability to regulate the function of ATR. A
study by Liu et al showed that the PI3K/Akt signaling
pathway had a regulatory effect on the function of
TopBP1. They showed that Akt was able to phosphor-
ylase TopBP1 and induce oligomerization in this mole-
cule. This was necessary for the regulatory function
which TopBP1 exerts on E2F‐1, a molecule involved in
the regulation of apoptosis. the authors concluded that
the PI3K‐Akt‐TopBP1 signaling cascade had parallel roles
to cyclin‐Cdk‐Rb in regulating apoptosis.33

FIGURE 2 This schematic representation shows the relationship between the PI3K/Akt signaling pathway, DNA damage and cancer
progression. There is a mutual interaction between PI3K/Akt and DDR, in which DDR targets key components of PI3K/Akt signaling and
vice versa. DDR, DNA damage response; PI3K, phosphatidylinositol 3‐kinases
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DNA‐PKcs are induced upon recognition of DSBs, and
subsequently autophosphorylate themselves, as well as
phosphorylating other mediator substrates. DNA‐PKcs
plays a unique role in DNA repair by promoting
nonhomologous end joining (NHEJ).34 The major trans-
ducer molecules of DDR belong to PI3K‐like kinase
(PI3KK) family, the interactions, as well as crosstalk
between PI3KK and PI3K/Akt signaling pathways, have
been intensively investigated in recent years. Mukherjee
et al assessed whether NVP‐BEZ235, a dual PI3K/mTOR
inhibitor, could radiosensitize human GBM cells by
inhibiting the functions of ATM and DNA‐PKcs, the
two major kinases responding to DSBs induced by
irradiation. They found that NVP‐BEZ235 could sensitize
cells to radiation, and compared with KU55933 (ATM
inhibitor, 10 μM) and NU7026 (DNA‐PKcs inhibitor,
10 μM), the amount of sensitization to radiation was
significantly greater. As expected, KU55933 and NU7026
treatments resulted in weakened DSB repair, consistent
with the important functions of DNA‐PKcs regarding
promoting NHEJ and the role of ATM in facilitating HR
and heterochromatic DNA repair. Interestingly, NVP‐
BEZ235 treatment resulted in a repair defect that was
much graver than that was seen with either of the earlier
mentioned agents (NU7026 or KU55933). Furthermore,
treatment with NVP‐BEZ235 affected both “early” and
“late” phases of DSB repair, with almost 70% of breaks
remaining unattended after exposure to radiation. It was
also shown that NVP‐BEZ235 decreased radiation‐in-
duced activation of ATM and DNA‐PKcs, similar to the
specific inhibitors NU7026 or KU55933. In addition,
phosphorylation of important ATM substrates down-
stream effectors such as SMC1 (Ser966), Chk2 (Thr68),
KAP‐1 (Ser824), p53 (Ser15), and H2AX (Ser139) was
reduced by pretreatment with NVP‐BEZ235, similar to
what was witnessed with KU55933.35 Alcazar et al36

reported the same results in glioblastoma, in which NVP‐
BEZ235 aggressively effected both DNA‐PKcs and ATM
kinases and reduced the appropriate repair of radiation‐
induced DNA damage in cancerous tumors. In another
study, Toulany et al37 investigated whether small‐
molecule inhibitors of epidermal growth factor receptor
(EGFR) tyrosine kinase (BIBX1382BS), PI3K activity
(BIBX1382BS), or Akt (API‐59CJ‐OH), as well as Akt 1
small interfering RNA (siRNA), were able to effect
irradiation induced activation and localization of multi-
ple proteins involved in the process of DNA repair. The
authors demonstrated that radiation‐induced autopho-
sphorylation of DNA‐PKcs was only blocked in K‐RAS‐
mutated A549 bronchial carcinoma cells by BIBX1382BS,
BIBX1382BS, and Akt 1 siRNA transfection. However,
the inhibitors did not alter the phosphorylation of ATM.
They concluded, therefore, that targeting of PI3K‐Akt

signaling initiated by EGFR activation in K‐RAS‐mutated
A549 cells significantly affected survival after radiation
by altering the activation of DNA‐PKcs, resulting in an
attenuated DSB repair capacity in the cells.37 Burrows
et al studied the effects of PI3K and PIKK signaling on
the radiosensitivity of thyroid carcinomas. To do so, they
examined the effects of PI3K‐inhibition achieved by
administrating GDC‐0941 to ATC (8505c) and FTC
(FTC‐133) cell lines. They noticed that GDC‐0941 was
able to inhibit the activation of ATM, ATR, and
DNA‐PKcs after exposure to radiation. They also noticed
that these series of molecules were not activated in
PTEN‐reconstituted FTC cells, showing a link between
inhibition of DDR transducers and PI3K signaling.
Interestingly, the authors found that the effects of PI3K
inhibition were greater in anoxia, as inhibition of PI3K
was only able to reduce survival in anoxic, not normoxic
conditions. Another observation was made regarding the
effects of GDC‐0941 in inhibiting the function of PIKKs.
It was shown that the inhibitory effects of PI3K inhibition
on PIKKs were able to significantly increase the time
which was needed for tumors to triple in size. This result
was particularly important as overactivation of PIKKs is
commonly seen in thyroid cancers.38 It has also been
reported that ATM‐mediated PTEN activation increases
translocation of PTEN into the nucleus and also results in
increased autophagy in response to DNA‐damaging
agents in cancer cells.39 More importantly, Topotecan
or cisplatin‐activated ATM phosphorylated, in turn,
PTEN at serine 113 and further regulated PTEN nuclear
translocation in A549 and HeLa cells. After nuclear
translocation, PTEN induces autophagy in response to
topotecan (TPT), which is associated with the activation
of the p‐JUN‐SESN2/AMPK pathway.39 In another study
conducted by Biechonski et al the effects of Quercetin, a
polyphenol compound with wide‐ranging effects on PI3K
signaling on DDR was assessed. They found that this
molecule exerted its genotoxic effects by inhibiting
Topoisomerase II, causing DNA damage and also
inhibiting NHEJ and HR in mixed lineage leukemia cell
lines. The authors found that these effects were mediated
partly by PI3K signaling inhibition and a decrease in the
expression of DDR genes. One important DDR players
affected by Quercetin was ATM. Quercetin decreased the
expression of ATM, although a transient increase was
seen because of the implicated DNA damage. This
resulted in the impaired HR, which was mentioned
earlier.40 In a study done by Viniegra et al it was shown
that the relation between ATM and Akt further extended.
They found that optimal activation of PKB/Akt signaling
in response to radiation or insulin was dependent on the
function of ATM. ATM had the ability to bind to Akt but
came short of directly phosphorylating it, evidence
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suggested that other downstream kinases related to ATM
could have phosphorylated and activated Akt.41 Other
studies found that the counterpart of ATM, ATR could
have roles in directly activating Akt. In a study by
Caporali et al it was shown that ATR, directly phos-
phorylated Akt on Ser473 in response to temozolomide,
and that using siRNAs to disrupt the function of ATR,
abolished the phosphorylation of Akt.42 At this point, it
would also seem reasonable to propose that ATR
mediates stimulation of other kinases such as DNA‐PKcs
to phosphorylate Akt. DNA‐PKcs plays important func-
tions in Akt activation in response to DNA damage
resulted by IR and doxorubicin.43 A study by Bozulic et al
found that DNA‐PKcs were the upstream molecules of
PKBalpha/Akt 1 signaling. They showed that PKB, a
molecule responsible for orchestrating prosurvival signals
was dependent on the functions of PDK1 and DNA‐PKcs.
It was witnessed that after DNA damage PKB would
localize to the damage site and interact with DNA‐PKcs
and that it was inversely associated with the rate of
apoptosis in cells undergoing radiation. Furthermore,
PKB was able to promote survival by regulating the
transcription of p21, an important DDR effector.43

3.2 | Crosstalk between PI3K/Akt
signaling and DDR mediators

Mediators promote interactions between transducers and
their downstream effector molecules (Figure 2).44 They
also have indisputable functions in recruiting other
molecules involved in DDR and act as platforms onto
which molecular complexes are assembled on to.45 After
DNA damage, the two DDR transducers ATR, ATM, and
DNA PK phosphorylate H2AX on Ser139 and recruit
Mdc1 to further facilitate H2AX phosphorylation, possi-
bly by tethering ATM or inhibiting the dephosphoryla-
tion of H2AX.46 The combined action of H2AX and Mdc1
also facilitates the recruitment of other mediator and
non‐mediator proteins to the sites of DNA damage,
causing irradiation‐induced foci to exist. If you recall, the
PI3K/Akt pathway plays a critical role in increasing
survival in cancer cells, and, therefore, malfunction of
this signaling pathway imposed by specific inhibitors
such as BKM120, and its combination with radiation,
may contribute to the enhanced sensitivity of liver cancer
cell lines to irradiation. Liu et al demonstrated that
BKM120 inhibition of PI3K resulted in the retention of
the γ‐H2AX foci at DSBs following irradiation, leaving
the DNA damage unrepaired. In other words, the
combined effect of BKM120 and irradiation abrogated
the activation of Akt by radiation causing an increase in
apoptosis and suppression of repair of DNA defects in
hepatocellular carcinoma cells. As such, one may

postulate that the final signaling output of the PI3K/
Akt pathway increases resistance to radiation or che-
motherapies and that theoretically, synthetic PI3K
inhibitors radiosensitize cancer cells.47 In a study by
Gwak et al the effects of silencing miRNA‐21, a
prominent onco‐miRNA with roles in radiosensitivity in
gliomas was discussed. In this study, anti‐miRNA‐20 was
used to reverse the effects of miRNA, in glioma cells. This
resulted in an increased rate of autophagosome forma-
tion, and formation of sustained gamma‐H2AX foci.
Furthermore, it was shown that the expression of Akt
phosphorylated on ser473 significantly decreased, after
irradiation.48 In another study, it was reported that
inhibition of the PI3K/Akt pathway by induction of
PTEN led to increased sensitivity to radiation in
glioblastoma cells.49 Kao et al found that PTEN deficient
U251 glioblastoma cells had a relatively high basal Akt
activation rates. Induction of PTEN in these cells would
decrease Akt activity and was coupled with increased
sensitization to radiation. Furthermore, induction of
PTEN significantly delayed the rate at which gamma‐
H2AX foci decreased. Interestingly, PI3K signaling
inhibitors delayed this process. The results of this study
suggested that a crucial link existed between PI3K
signaling and DDR and that this link could be targeted
to increase radio‐sensitivity.49 Along these lines, Pappas
et al demonstrated that pretreating non–small‐cell lung
carcinoma (NSCLC) cell lines with an adenoviral‐
mediated PTEN‐expressing vector sensitized cells to
radiation, compared with controls.50 In that study,
H2AX DNA foci formation was increased and the repair
of radiation‐induced breaks was halted, consistent with
previous studies and the radiosensitizing properties of the
used vector.

Afterward, 53BP1 is recruited to the damage site, in an
H2AX‐ and Mdc1‐dependent manner.51 An E3 ubiquitin
ligase, Ubc13‐Rnf8, is recruited by activated Mdc1, and
subsequently ubiquitinates H2AX and other important
molecules involved in DDR. The combined action leads
to the recruitment of other important mediators, such as
53‐binding protein‐1, which itself is a link to further
signaling cascades, and a centerpiece of DDR mediatory
function, the BRCA1 “A complex.”52-54 The function of
Ubc13, Rnf8, and BRCA1 is necessary for optimal foci
formation, with the last one being a ubiquitin ligase
itself.55 Furthermore, other studies have shown that the
BRCA1‐CtBP interacting protein had functions in using
MRN complex action. This importance was highlighted
in a study by Ibrahim et al where PI3K inhibition was
used to impair HR in triple negative breast cancer cells
proficient in BRCA‐1. PI3K inhibition led to increased
DNA damage, downregulation of BRCA1, and sensitiza-
tion to poly (ADP‐ribose) polymerase (PARP) inhibitors.
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It is noteworthy to mention that MEK1/ERK signaling
was also involved in BRCA1 downregulation after PI3K
inhibition.56 In conclusion, this study found that co‐
treatment with BKM120 and Olaparib, which are PI3K
and PARP inhibitors; significantly improved response to
treatment and reduced the growth of the tumors.56

Phosphorylation of BRCA1 inherently alters its function.
Activation of the Akt oncogenic pathway is an example of
BRCA1 malfunction.57 A study by Xiang et al found that
BRCA1 had negative regulatory effects on Akt. They
showed that silencing BRCA1 significantly increased the
phosphorylation of Akt, thus increasing its activity, and
increasing its signaling output. This malfunction of
BRCA1 also causes the disruption of functions of
FOXO3a, which is a target of Akt signaling. Further
investigation by the authors elicited that BRCA1, have a
tendency to bind to phosphorylated Akt, and leading to
its degradation by the ubiquitin‐proteasome pathway.57

PI3K/Akt signaling also enhances nuclear localization
and transcriptional activity of BRCA1.58 Altiok et al
introduced a signaling pathway by which heregulin, a
combinatorial ligand for the EGFR family, induced cell
cycle‐independent phosphorylation of BRCA1.59 This was
done via Akt in the Thr‐509 residue of BRCA1, in T47D
human breast cancer cells. Furthermore, the introduction
of PI3K/Akt signaling inhibitors to the medium reversed
the effects of heregulin. The authors also found that the
ectopic expression of active subunits of PI3K was able to
mimic the effects of heregulin, suggesting that extra-
cellular pathways such as PI3K/Akt can directly affect
the functional status of DDR mediators in human cancer
cell lines.

3.3 | Crosstalk between PI3K/Akt
signaling pathway and DDR effectors

As mentioned before, DDR is composed of numerous
molecules, which are activated after ATM and ATR
perform their enzymatic function. These are the mole-
cules which directly mediate how cells are altered in
response to DDR.60,61 As noted, one important function
of DDR is promoting DNA repair where and when it is
needed.45 In addition, the critical role of DDR in
controlling the cell cycle has significant importance in
human pathologies such as cancer. The next major
effector pathway of DDR is apoptosis, which has
important physiologic roles in development and also an
important antioncogenic function. All these multiple
functions are both regulated by integrated signaling in
DDR and also by other signaling pathways. One of the
most important being PI3K signaling. The next para-
graphs will aim to demonstrate how exactly PI3Ks effects
endpoints of DDR signaling.62

3.3.1 | Apoptosis

Following any deleterious irreparable damage to DNA
integrity, the cells enter the apoptotic phase. Apoptosis
can be induced through two distinct pathways, the
extrinsic death receptors or the intrinsic mitochondrial
pathway to diminish corrupted cells that cannot maintain
themselves or cells with irreparable DNA damage, to
maintain homeostasis. The PI3K/Akt signaling pathway
is probably one of the well‐characterized and most
prominent pathways involving in the transmission of
apoptotic signals in cell survival. For example, Jeyamo-
han et al investigated the effect of Parthenolide on HeLa
cervical cancer cell lines and found that this agent‐
induced apoptosis and autophagy by downregulating
mTOR signaling and inhibiting PI3K signaling. This
downregulation in PI3K signaling was secondary to
PTEN activation.63 Bai et al study the effects of
(1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyrano-
syl-(1→2)-β-D-xylopyranoside] (RCE-4) on cervical can-
cer cells and found that this agent increased apoptosis via
the mitochondrial pathway. This effect was mediated by
downregulation of PI3K/Akt/mTOR and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF‐κB)
signaling, which was shown by reduced levels of PI3K,
Akt, and NF‐κBp65. Furthermore, mRNA levels of
important interleukins involved in inflammatory pro-
cesses such as interleukin‐1 beta (IL‐1β) and interleukin‐
6 (IL‐6) were reduced, showing a prompt anti‐inflamma-
tory effect. Study of apoptosis mediators revealed that the
balance between proapoptotic and antiapoptotic mole-
cules changed to favor apoptosis.64 Moreover, PI3K/Akt
signaling pathway crosstalk with MAPK signaling path-
way in DNA‐damaging drug‐induced apoptosis was
demonstrated in a study by Lee et al65 They used
Doxorubicin on NIH3T3 cells and examined its effect on
the aforementioned signaling pathways. Inhibition of
PI3K signaling and p38‐mitogen‐activated protein kinase
(MAPK) pathway caused an increase in apoptosis, but
ERK inhibition caused a decline in apoptosis. Further-
more, affecting PI3K/Akt signaling using LY294002 or
Akt mutants significantly modulated ERK1/2 function,
and sustained activation of PI3K and ERK together were
associated with apoptosis induced by etoposide. A study
by Hao et al investigated the effects of Licochalcone A on
human gastric cancer cells.66 Licochalcone A is a
polyphenol, from the flavonoid subgroup. This agent
had effects on the function of PI3K/Akt and MAPK
signaling, and also increased the formation of reactive
oxygen species (ROS), which caused an increase in
apoptosis. Furthermore, these effects were coupled with
an activation of JNK, p38 MAPK, and ERK. This agent
suppressed the activation of PI3K signaling and
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decreased the function of PI3K and Akt, causing a
decrease in cellular proliferation.

In an interesting investigation by Demel et al the relation
between DDR, PI3K signaling and glucose metabolism was
discussed. For this purpose, OPM‐2 multiple myeloma cells
were treated with topoisomerase inhibitors, bortezomib,
vincristine, inhibitors of ATM, DNA‐PKcs, and inhibitors of
PI3K signaling. After treatment, [18F]-fluorodeoxyglucose
(FDG) uptake was monitored using a positron emission
tomography (PET) scan. It was witnessed that treatment
with topoisomerase inhibitors alone increased the uptake of
[18F]‐FDG, signaling an increase in survival. But combining
these agents with inhibitors of PIKK and PI3K signaling
decreased [18F]‐FDG uptake and increased rates of
apoptosis. This study showed that targeting DDR and other
signaling pathways affecting its function such as PI3K/Akt
signaling could be beneficial in cancer treatment.67

One of the most important and central components in
DDR involved in the induction of apoptosis is the tumor
suppressor p53.68 P53 is released under controlling effect
of MDM2, and accumulates in the cell and induces
expression of the target gene,69 in response to DNA
damage. In effect, ATM phosphorylates Chk2 and
subsequently p53 at serine 20, which leads to an increase
in p53 levels. In addition, ATM phosphorylates MDM2
and releases p53 from its control.70 The interplay
between p53 and PI3K/Akt signaling pathway was
investigated in a number of studies detailed in the
Table 1.

3.3.2 | Cell cycle checkpoints

Cell‐cycle status is an important factor which determines
the response to DNA damage. Furthermore, there are
multiple crosslinks between multiple effectors and
mediators of DDR and cell cycle checkpoint molecules.93

For example, ATM, p53, and CHK2 regulate the G1/S
checkpoint, which is an important time period for
ensuring that the DNA content of the cell is suitable for
replication. Repair in the G1 phase is dependent on
NHEJ.94,95 The S phase checkpoint is upheld by DDR
proteins such as ATR, DNAPK, WEE1, and CHK1, which
can delay replication initiation, so that undesired
alterations of the DNA do not cause cell death responses
or are not passed to the next generation of cells.96 MYT1,
CHK1, and WEE1 contribute to the G2/M arrest by
increasing phosphorylated CDK1 and delaying mitotic
entry. These examples show the complicated role of DDR
in maintaining the genomic integrity, both by promoting
repair and affecting the cell cycle. This has caused many
scholars to investigate agents to target DDR and its
functional outcomes in cancer.96 It is important to note
that many signaling pathways such as PI3K control DDR.

The stimulatory effects of PI3k/Akt signaling on the cell
cycle progression have been established in various studies
as being involved in the regulation of the function of
multiple substrates related to the G1/S and G2/M
transitions. Table 2 enlists the studies which investigated
the interplay between cell cycle checkpoints, DDR
molecules and the PI3K/Akt signaling pathway.

3.3.3 | DNA repair

On the basis of the characteristics of the damage imposed
on the DNA, DNA damages can be repaired by multiple
distinct mechanisms, including nucleotide excision repair
(NER), base excision repair (BER) and mismatch repair
(MMR).17,119,120 NER is mainly required to repair tran-
scription blocking and helix sorting lesions which might
happen when pyrimidine dimers and intrastrand crosslinks
occur.121 BER functions by correcting chemical modifica-
tions of DNA or single nucleotides which have been altered
as the result of processes such as oxidation,122 and MMR
corrects mistakes during the DNA synthesis or replication
process.120 NHEJ or HR are two additional repair
mechanisms used in DSBs to remove the most frequent
toxic and difficult‐to‐repair DNA damages. NHEJ is an
error‐prone process activated during G0 and G1 phases of
the cell cycle and is active in rejoining broken ends of the
DNA. HR is active in the S phase or replication phase of
the cell cycle and requires a homologous DNA template
sequence, leading to an error‐free repair process.123 Some
key players of these DNA repair machinery are modulated
by PI3K/Akt signaling pathway. An intestinal‐secreted
neurotrophic factor, glucagon‐like peptide‐1 (GLP‐1), for
example, this molecule is implicated in neuronal survival
and neurite outgrowth, as well as protecting synaptic
plasticity from age driven β‐amyloids124 and ameliorating
the oxidative DNA damage to neurons. Research has
shown that binding of GLP‐1 to its receptor (GLP‐1R)
initiates a signaling cascade which promotes DNA repair,
namely BER, by increasing the expression of apurinic/
apyrimidinic endonuclease 1 (APE1) which is an enzyme
active in BER. This is mediated in part by activating the
cAMP response element binding protein (CREB).125 More
so, inhibition of the PI3K signaling by LY294002 resulted in
the significant downregulation of the APE1 expression. In
addition, administration of exendin‐4, an analog of GLP‐1,
was shown to promote rates of DNA repair in neuronal
brain cells of rats undergoing ischemia. Accordingly, these
studies suggest that a novel function of GLP‐1 is to induce
DNA repair mechanisms by promoting the expression of
APE1, which is regulated by the PI3K pathway. One study
has implicated PI3K‐Akt signaling in the regulation of
basal rates of expression of X‐ray repair cross‐complement-
ing group 1 protein (XRCC1), which is involved in BER.126
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This study found that a functional interaction existed in‐
between PI3K signaling, DNA‐PKcs, and XRCC1. Basal
level regulation of XRCC1 was dependent on DNA‐PKcs
function, which was itself regulated by PI3K signaling. But
the radiation‐induced change in expression of XRCC1 was
dependent on MAPK‐ERK1/2 signaling cascade. The
authors suggested that these interactions could be targeted
in cell lines of lung cancer and glioblastoma, via using
kinase inhibitors against DNA‐PKcs and PI3K/Akt
signaling.126

The interplay between two other important compo-
nents of repair machinery, excision repair cross‐comple-
mentary gene 1 (ERCC1) and BRCA1, and PI3K signaling
was evaluated in NSCLC.127 It was illustrated that
downregulation of ERCC1 and BRCA1 decreased cell
proliferation and PI3K and Akt activity while increasing
caspase 3 activity. This relation was shown in a study
where ERCC1 and BRCA1 were overexpressed in drug‐
resistant NSCLC cells. They contributed to the malignant
phenotype occurrence and development by affecting the
PI3K/Akt signaling pathway.127 In addition to excision
repair, HR is also regulated by the PI3K signaling
pathway, as demonstrated by recent studies. For example,
it was reported that the combined inhibition of PI3K and
PARP effectively synergized to block the growth of
ovarian cancer cell lines.127 Double blockade of PARP
and PI3K in these cell lines by Olaparib and BKM120
resulted in substantially weakened PI3K/Akt/mTOR
signaling, defective DDR as well as deficient HR DNA
repair, with significant downregulation of BRCA and
reduced RAD51 foci formation.127 In addition, McEllin
et al, noticed that the loss of PTEN in astrocytes resulted
in increased sensitivity to N‐methyl‐N′‐nitro‐N‐nitroso-
guanidine (MNNG), a temozolomide analog with similar
functions. They showed that MNNG causes secondary
DSBs that are not repaired properly in PTEN deficient
cells due to compromised DNA repair, which might be
because of reduced expression of Rad51 paralogs.128

Another study reported that Astaxanthin, a red dietary
carotenoid from terpenes, inactivated Akt, thus down-
regulating RAD51, and enhancing mitomycin C‐induced
cytotoxicity in NSCLC.129 Transfecting cells with si‐
Rad51 RNA leading to inhibited RAD51 expression or
introduction of LY294002 to the cells further increased
the cytotoxicity and cell proliferation inhibition of
astaxanthin. In addition, a combination of mitomycin C
and astaxanthin synergistically resulted in cell death and
inhibition of proliferation and growth in NSCLC cells,
which as expected, was caused by reduced Akt function
and decreased the level of Rad51 expression. Further-
more, overexpression of Akt or Rad51 reversed the effects
of astaxanthin and mitomycin C. In contrast, pretreat-
ment with LY294002 increased the effectiveness of

cotherapy by astaxanthin and mitomycin C.129 PI3K/
Akt /mTOR signaling was also involved in the promotion
of the repair of DSB by modulating FANCD2,130 and
BRCA1‐A complex, other key players of HR.131 DNA‐
PKcs and Ku80,132 Ku70,133 and XRCC4‐like factor
(XLF),134 which are involved in the NHEJ, are potential
targets of the PI3K signaling pathway. Akt phosphor-
ylates DNA‐PKcs and Ku80 which results in radio-
sensitization of DNA‐PKcs and Ku80 expression.132 Akt 1
interacts with and phosphorylates UBE2S, a novel
substrate of Akt1, enhancing its stability by inhibiting
proteasomal degradation. Accumulated UBE2S is asso-
ciated with Ku70, as well as regulating DNA repair.133

Akt exerts a regulatory function on XLF by phosphor-
ylating it, which causes XLF to dissociate from the DNA
ligase IV/XRCC4 complex. Furthermore, phosphoryla-
tion of XLF leads to an increased interaction between 14‐
3‐3b and XLF, causing XLFs retention in the cytoplasm,
where cytosolic XLF is then degraded in a CKI‐
dependent manner by SCFb‐TRCP. Therefore, upon
DNA damage, XLF‐T181E expressing cells display
increased cell death because of impaired NHEJ.134

4 | PI3K/Akt SIGNALING
PATHWAY AND MODULATION OF
OXIDATIVE STRESS

ROS interfere in multiple signaling pathways essential for
cellular hemostasis. Cells have adopted various strategies
to neutralize the negative effects of ROS through
upregulation of antioxidant enzymes such as manganese
superoxide dismutase, catalase and sestrin 3, to name a
few.135 This response is dependent on the activation and
function of FOXO, a group of transcription factors that
regulate the survival of the cell by regulating quiescence
and cell cycle arrest in response to cellular stress caused
by oxidative stress. Oxidative stress resulted from over-
production of ROS activates the expression of FoxO in
affected cells.19 The activity of the PI3K/Akt signaling
pathway causes direct phosphorylation FoxO family
transcription factors and prevents their entry into the
cell nucleus. At the same time, the PI3K/Akt signaling
pathway activity increases ROS levels intracellularly by
enhancing oxygen consumption and oxidative metabo-
lism in mitochondrial. PTEN is a tumor‐suppressor
phosphatase and is important in the regulation of
oxidative stress. PTEN modulates PI3K/Akt signaling
pathway activity negatively through conversion of PIP3 to
PIP2.136-138 Production of ROS (H2O2 is prototypical of
ROS) endogenously suppresses PTEN during oxidative
stress and, as a result, activates Akt signaling pathway
and produces more ROS.139 Studies have shown that
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tumor suppressor p53 which is also a key effector of
DDR, and peroxisome proliferator‐activated receptor γ
can increase PTEN expression.137 PI3K/Akt signaling
pathway increases nuclear factor erythroid 2‐related
factor 2 (Nrf2) important for eliminating xenobiotics
and ROS. Nrf2 modulates genes encoding antioxidant
proteins under various stress conditions through inter-
acting with the antioxidant‐responsive element and
increases a group of enzymes, called phase II antioxidant
enzymes such as glutathione peroxidases, quinone
oxidoreductase 1, NAD(P)H, glutathione S‐transferases,
glutamate‐cysteine ligase, and heme oxygenase‐1.140-142

From this perspective, the signaling PI3K/Akt pathway
acts like a double‐edged knife, as it increases phase II
antioxidant enzymes by activating Nrf2 and therefore
knocks down ROS production. On the other hand, it
decreases phase I antioxidant enzymes, thus enhancing
the production of ROS through phosphorylation and
inhibition of FoxO. Because Akt increases cell metabo-
lism and proliferation, it consequently produces ROS.
FoxO can eliminate ROS but paradoxically is inhibited by
Akt. Alternatively, Akt uses another strategy, the activa-
tion of Nrf2, to counteract the production of ROS in this
pathway. Regulation of balance between these pathways
by PI3K/Akt signaling pathway helps to preserve the
integrity and hemostasis of the cells.

5 | CONCLUSIONS

This review aimed at exploring the factors causing the DNA
damage, which endangers cell viability vs those working to
maintain the integrity and hemostasis of the cell. The Akt/
PKB kinase maintains an important role in signaling
pathway controlling numerous cellular processes which
eventually cause the cell life to continue or culminate in
the cell death. A cumulative body of evidence implicates the
hyperactivation of PI3K/Akt in multiple types of human
cancer. The evidence amply shows that the PI3K/Akt
signaling pathway is also activated in cells upon DNA
damage, which in turn stimulates some important signaling
networks involved in the maintenance, as well as restoration
of cellular homeostasis. In this review, we discussed the
involvement of the PI3K/Akt signaling pathway in the
regulation of DDR by interaction and crosstalk with three
important part of DDR including sensors, transducers, and
effectors.
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